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Consumers are increasingly aware of the link between their lifestyle choices and the risk of noncom-

municable diseases. A dynamic approach incorporating this linkage in food demand is developed,

where consumers maximize utility over time by choosing fat intake to control their cumulative fat

level. The resulting dynamic indirect utility function and household data on meat, fish, and dairy con-

sumption are used to estimate a censored demand system. Results show that consumers consciously

adjust, but not instantaneously, their cumulative fat level. Highly educated households have a faster

rate of adjustment of cumulative fat. When cumulative fat level increases, consumers shift to dairy or

white meat from red meat products.
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In the past few decades, consumers have be-
come increasingly aware of the link between
their lifestyle choices and the risk of non-
communicable diseases such as heart ailments
and cancer (Chern, Loehman, and Yen 1995;
Cutler, Glaeser, and Shapiro 2003; Ippolito
and Mathios 1995; Variyam et al. 1998). Sev-
eral scientific studies have found an association
between diet, physical activity, and health risks
(Stoeckli and Keller 2004; van Dam et al. 2002;
Giovannucci et al. 1993). These studies view
the diet–health risk association as a result of
consumption decisions of the past, present, and
the future. For instance, van Dam et al. (2002)
tracked over 40,000 people between 1986 and
1994 and found that frequent consumption of
meat, a proxy for total and saturated fat intake,
increases risk of type 2 diabetes. Others have
identified significant correlations between to-
tal fat intake and incidences of several types
of cancer (Stoeckli and Keller 2004). The
diet–health risk association has prompted the
U.S. Departments of Agriculture and Health
and Human Services, American Cancer So-
ciety and others to issue dietary guidelines,
which urge a change in the composition of fat
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intake from meat products to dairy and fish
products.

Several factors make it difficult to incorpo-
rate health management into an optimizing
framework in order to derive empirical spec-
ifications of health-based food demand func-
tions. For instance, assuming consumers have
access to some health information, it is not
clear whether this information should be rep-
resented as a preference or constraint in an
optimizing decision model. Moreover, recent
health-based food consumption models are
static, while a more realistic representation of
a health optimization would require a dynamic
model (Park and Davis 2001; Nayga and Capps
1999).

This article introduces a dynamic approach
to incorporate health management in con-
sumer’s demand for meat, fish, and dairy
(MFD) products. We derive MFD consump-
tion from a two-step optimization problem.
The first step consists of a utility maximization
problem with two constraints: an expenditure
constraint and a fat intake constraint. We as-
sume that consumers earn positive utility from
the consumption of foods (goods), even those
with high fat content, but earn negative util-
ity from their cumulative fat level (bads) in
the body.1 That is, consumers enjoy consum-
ing fatty meats (steak, pizza) but are limited
by self-imposed (or doctor-imposed) health
requirements. Therefore, consumers face not

1 We recognize also that not all fats are bad and managed by
consumers. Our theoretical set up can easily be adapted to most
“bads” including fat. However, our empirical specification focuses
on one such bads—fat, due to data availability.
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only expenditure constraints but also con-
straints on the amount of fat they are willing
to absorb each time period. The solution to the
first-step problem is an indirect utility function
(IUF) with properties not unlike those of the
standard IUF. However, fat intake and the cu-
mulative fat level are arguments of the IUF,
in addition to prices and expenditures. In the
second step, consumers maximize utility over
time by regulating their fat intake in order to
control the cumulative fat level. The choice of
fat intake is presented as a dynamic optimiza-
tion problem, whose solution is a dynamic IUF
(DIUF). Using the duality properties of the
DIUF (equivalents of Roy’s Identity), we de-
rive dynamic consumer demand functions with
a law of motion incorporating health decisions.

A second-order approximation of the DIUF
allows us to represent the dynamic demand
functions as expenditure shares and to derive
an explicit equation of motion for cumulative
fat levels. They are estimated as a censored
system using data on 250 U.S. households on
a monthly basis between December 1997 and
January 2001, which are obtained from AC-
Nielsen’s Homescan Panel (ACNH) database.
The products included in our estimation are
beef, pork, chicken, fish, milk, and cheese. The
fat content of the MFD products is calculated
using a recent report of the Agricultural Re-
search Service, U.S. Department of Agricul-
ture (Gebhardt and Thomas 2002). The price
and expenditure elasticities of demand for var-
ious MFD products are computed using the
estimates of the dynamic demand functions.
To the best of our knowledge, this is the first
study to identify how consumers adjust fat in-
take over time and to derive the effects of ac-
cumulated fat on demand for individual MFD
products (elasticities).

A Dynamic Demand Model with Fat Intake

The first step in deriving dynamic consumer
demand functions with health attributes is to
set up an IUF, which represents the solution
to a static two-constraint utility maximization
problem. This problem can be specified as

� (p, f, E, F, C) = max U(x1, x2, . . . , xn, C)

s.t.
n∑

i=1

pi xi ≤ E;
n∑

i=1

fi xi = F

(1)

where � is the IUF, p is a nx1 vector of prices of
consumption goods x, E is expenditures, f i ∈ f

is the fat content of consumption good xi, F and
C are respectively fat intake and cumulative
body fat level and U is a direct utility function.

The first constraint in equation (1) repre-
sents the typical expenditure constraint and is
assumed to be binding. The second constraint
represents a health or fat-intake constraint.
Each food product contains a certain amount
of fat (f i), which is written as a proportion of
the product’s consumption in equation (1). For
example, if f 1 were 0.01, it would mean that
1% of the amount of x1 consumed is fat. The
specification in equation (1) assumes that con-
sumers care about the total fat intake rather
than fat intake from individual foods, which
allows for substitutability among “bads.”2 A
special case of equation (1) is one where F and
C are scalars implying that people care only
about total fat and do not manage fat from
each MFD product.

The utility function, U, is increasing and con-
cave in the n goods, xi, but decreasing in the
amount of cumulative fat, C.3 The properties
of the static IUF are similar to those of a stan-
dard utility function. That is, � is decreasing
and convex in prices p, increasing and concave
in E, and homogenous of degree zero in p and
E. Additionally, � is increasing and concave in
F.4 This reflects the assumption that consumers
enjoy and would consume more fatty meats, if
self- (or doctor-) imposed fat constraints did
not limit such consumption. However, con-
sumers earn negative utility from their total
cumulative fat levels C. We assume that � is
decreasing in C. This view is analogous (but op-
posite in sign) to the roles of investment and
capital in production theory with adjustment
costs (Epstein 1981; Vasavada and Chambers
1986).5

Similar to dynamic production models, the
solution to the first (allocation) stage is then
used to optimize over time the level of fat
intake (F) and cumulative fat (C). To deter-
mine the level of “C” we introduce dynamics to
the consumer problem through an equation of

2 A general specification would treat fat from each MFD product
differently. The analytics of the general specification is similar to
that outlined in the following.

3 Note that U(·) may not be a function of C for some low-income
consumers.

4 Concavity applies since the structure of the fat constraint is
similar to that of the expenditure constraint, and thus, F must in-
fluence the IUF in a way similar to E.

5 Consider this in light of a production function with adjustment
costs. Higher C (capital), lowers (raises) utility (output), but the
process of consuming fatty goods and changing C (capital) raises
(lowers) utility (output). These could be termed adjustment “ben-
efits,” which may prevent consumers from instantly adjusting to
desired cumulative fat levels.
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motion describing fat absorption in each pe-
riod, Ċ

Ċ = F − �C(2)

where � is an average rate of fat decay in the
body for all MFD products. The decay rate is
determined by biological factors and assumed
to be exogenous for our purposes.6 We fo-
cus on fat absorption because of the scientific
link between meat fat consumption and higher
risks of noncommunicable diseases. In addi-
tion, the law of motion represents expected
behavior of an average consumer based on di-
etary guidelines from health organizations. Ev-
idence suggests that consumers choose food
products based on fat content (Cowley 1998;
Food Marketing Institute 2005).7 Moreover,
equation (2) represents a health management
rule not unlike a body mass index in related
studies (Cutler, Glaeser, and Shapiro 2003).

Note that health-conscious consumers face a
dynamic problem analogous to a standard dy-
namic investment problem in production eco-
nomics (Epstein 1981; Sargent 1978; Vasavada
and Chambers 1986). While fat intake raises
consumer utility each period, cumulative fat
lowers utility. Consumers control C by manag-
ing F each period. That is, in each time pe-
riod, consumers vary the amount and types
of meat they consume to meet their optimal
choice of F. So, cumulative fat follows an
equation of motion and decays at the rate of
� . This choice problem can be represented
as a standard dynamic optimization problem,
where consumers maximize their indirect util-
ity across time. The control variable is F, rep-
resenting each period’s fat intake, which is
used to manage the state variable C. To focus
our attention on fat intake, we do not specify
an equation of motion for expenditures. This
makes our dynamic demand functions depen-
dent on expenditures rather than income in the
following sections.

The dynamic problem to represent this con-
sumer can be written as

6 Again, in the general case where F and C are vectors, there will
be n laws of motion. Equation (2) would then involve a � matrix,
whose structure depends on the assumed adjustment process.

7 A number of media, health publications, as well as doctors and
nutritionists advise consumers to manage their meat consumption
this way. Calorie management by consumers is a more recent trend,
but how calories translate into fat and vice versa is beyond the scope
of this study.

V(p, f, E, C) = max
F

∫ ∞

0

e−�t � (p, f, E, F, C)

s.t. Ċ = F − �C

(3)

where V is a DIUF and � is a consumer’s
subjective time discount rate. In the dynamic
problem in equation (3), a consumer manages
his/her cumulative fat level, C, by choosing the
level of fat intake each period, F, so as to max-
imize discounted utility over time. Since con-
sumers enjoy fatty foods, a rise in F increases
consumer’s static utility, but the cumulative
build up of fat, C, lowers long-run utility. The
DIUF has prices, expenditures, and the fat con-
tent of each product, and total cumulative fat
as its arguments.

As in any dynamic problem, there exists a
Bellman equation, which is the static equiv-
alent of the dynamic problem. The Bellman
equation is given by

�V (p, f, E, C) = max
F

� (p, f, E, F, C)

+ VC (F − �C).

(4)

Equation (4) can be viewed as a typical La-
grangian problem, where the Lagrange mul-
tiplier (LM) is written explicitly in terms of
the derivative of DIUF, i.e., VC, which is the
shadow price of the cumulative fat level C. The
properties of V(·) are derived in the Appendix.

To specify a demand function consistent with
the dynamic objective function in equation (3),
the envelope properties of the DIUF must
be derived. This can be done by setting up
a primal-dual problem based on the Bellman
equation as follows

min
p,E,C

{�V (p, f, E, C) − � (p, f, E, F, C)

− VC (F − �C)}.

(5)

The optimizing problem in equation (5)
treats F as given and seeks to find a price vec-
tor (p), the level of E, and C that minimizes the
difference between the optimal DIUF and the
right-hand side of equation (4). In other words,
the objective is to find a p, E, and C which
make the F in equation (4) optimal. While it
is possible to solve the optimization problem
in equation (5), for the purposes of this ar-
ticle, the problem in equation (5) serves pri-
marily to provide a basis for deriving dynamic
demand functions, which are consistent with
the maximization problem in equations (3) and
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(4). Equation (5) is also used to determine the
properties of the DIUF, which are presented in
the Appendix. The DIUF is homogeneous of
degree zero in prices and expenditures, is de-
creasing and convex in prices, increasing and
concave in expenditures, and decreasing and
concave in cumulative fat. For applications of
the envelope theorem in dynamic optimization
see Epstein (1981), and LaFrance and Barney
(1991).

To derive the demand functions consistent
with the DIUF, we obtain the first-order con-
ditions for the problem in equation (5). These
conditions are

�Vpi − � pi − VCpi
Ċ = 0 ∀i = 1, 2, . . . , n

�VE − � E − VCEĊ = 0

�VC − �C − VCCĊ + � VC = 0

(6)

where the subscripts pi, E, and C represent
derivatives with respect to prices, expendi-
tures, and cumulative fat, respectively. For
exampleVpi represents the derivative of the
DIUF with respect to the ith output price. The
three equalities in equation (6) are respectively
the first-order conditions with respect to prices,
expenditures, and C. They can be solved to ob-
tain levels of p∗, E∗, and C∗ that make whatever
level of F, that is represented in equation (4)
optimal.

To recover demand functions from equa-
tion (6), we need to rewrite them as

�Vpi − VCpi
Ċ = � pi ∀i = 1, 2, . . . , n

�VE − VCEĊ = � E

Ċ = (� + �)VC − �C

VCC
.

(7)

To obtain the demand function, divide the first
line of equation (7) by its second line

xi = � pi

� E
= �Vpi − VCpi

Ċ

�VE − VCEĊ
∀i = 1, 2, . . . , n.

(8)

Equation (8) shows that it is possible to derive
the dynamic demand function from derivatives
of the DIUF function (equivalent to dynamic
Roy’s Identity). If it is possible to calculate the
amount of MFD fats consumed each period,
the derivatives of a particular specification of a
value function yield the dynamic demand func-

tions. Note that the equation of motion for cu-
mulative fat (Ċ) requires information on the
derivatives of static and with dynamic.

The specification in equations (7) and (8)
suggest two possible strategies for estimating
health-based dynamic demand functions. One
is to separately estimate demand functions and
the cumulative fat motion (Ċ) equation, since
together they form a recursive system. The sec-
ond is to substitute the Ċ equation directly into
the consumer demand equations. If this lat-
ter course is taken then the demand function
becomes

xi = �Vpi + 1
VCC

[
((� + �)VC − �C )VCpi

]
�VE + 1

VCC
[((� + �)VC − �C )VCE]

.(9)

However, it will be shown later in this article
that the structure of the residuals from equa-
tions (7) and (8) can result in a linear system
of dynamic demand functions.

An Empirical Example

To obtain an empirical framework for the dy-
namic demand functions, we first specify the
DIUF as a second-order quadratic approxima-
tion to a true function V(·)

V(p, f, E, C) = �0 +
n∑

i=1

�i p̃i + �1C + �1 Ẽ

+ 1

2

n∑
i, j=1

�ij p̃i p̃ j + 1

2
�2C2

+ 1

2
�2 Ẽ2 +

n∑
i=1

�i ( p̃i C)

+
n∑

i=1

	i ( p̃i Ẽ) + 
(C Ẽ)

(10)

where the “∼” over a variable indicates a log-
arithmic transformation. Note that only eco-
nomic variables in equation (10) are specified
in natural logarithms. The above approxima-
tion is similar to example 2 of Epstein (1981,
p. 88).8 The f i terms, the fat content of each

8 In response to a question on whether solutions to functions of
the form � (x, y) = f (x) + g(y) + h(x)k(y) exist, Lundberg (1992)
derived several representatives of equivalence classes of solutions
to �, f , g, h, and k. Our specification in equation (10) is a second-
order approximation, which is linear in parameters and in the spirit
of Lundberg (1992). It is important to emphasize here that most
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product, are not explicitly specified in equa-
tion (10) because they do not change over time
and therefore, are embodied in the constant
term. Consumers are assumed to hold static
food price expectations.

Given the above specification for the DIUF,
the following derivatives apply

�Vpi = �

pi

(
�i +

n∑
j=1

�ij p̃ j + �i C + 	i Ẽ

)
∀i = 1, 2, . . . , n;

�VE = �

E

(
�1 + �2 Ẽ +

n∑
i=1

	i p̃i + 
C

)
;

VC = �1 + �2C + 
 Ẽ +
n∑

i=1

�i p̃i

∀i = 1, 2, . . . ., n;

VCE = 


E
; VCpi

= �i

pi
; VCC = �2.

(11)

Therefore, the quantity demanded of the ith
good can be written as

xi = �Vpi − VCpi
Ċ

�VE − VCEĊ

=
�
pi

(
�i + ∑n

j=1 �ij p̃ j + �i C + 	i Ẽ
)

− �i Ċ
pi

�
E

(
�1 + �2 Ẽ + ∑n

i=1 	i p̃i + 
C
) − 
 Ċ

E

.

(12)

From equation (12), expenditure share equa-
tions for the ith good can be written as

si = pi xi

E

=
�

(
�i + ∑n

j=1 �ij p̃ j + �i C + 	i Ẽ
)

− �i Ċ

�
(
�1 + �2 Ẽ + ∑n

i=1 	i p̃i + 
C
) − 
 Ċ

∀i = 1, 2, . . . , n

(13)

where si is the ith good’s share of the total ex-
penditures. Demand properties, homogeneity
in p̃ and Ẽ and adding up (shares sum to one),

empirical studies use “a” particular second-order approximation
meaning that there exists a number of solutions to the true function.
Our specification (equation (10)) is one such solution to �, f , g, h,
and k. See also Von Haefen (2002).

hold if across all share equations (LaFrance
2001)

n∑
i=1

�i = 1;
n∑

i=1

�ij =
n∑

j=1

�ij =
n∑

i=1

�i

=
n∑

i=1

	i = 0; �1 = 1;

�2 = 
 = 0.

(14)

Imposing the homogeneity and adding up re-
strictions that apply to equation (12) yields the
following share equation for the ith good

si =
�

(
�i + ∑n

j=1 �ij p̃ j + �i C + 	i Ẽ
)

− �i Ċ

� (1 + ∑n
i=1 	i p̃i )

.

(15)

Equation (15) shows that every share equa-
tion has the same denominator. In fact, with
the exception of the terms containing C and
Ċ the share equations in equation (15) are not
that different from standard Marshallian de-
mands. If each �i = 0, then equation (15) re-
duces to

si =
�

(
�i + ∑n

j=1 �ij p̃ j + 	i Ẽ
)

�
(
1 + ∑n

i=1 	i p̃i
) .(16)

Thus, nested within our health-based model is
a Marshallian demand (share) function that
is derived from Roy’s identity. Using econo-
metric methods it is possible to test parame-
ter restrictions that collapse our health-based
demand into a standard Marshallian demand
function.

Similar to Marshallian demand, restrictions
on price and income can be imposed to in-
sure “Slutksy symmetry,” i.e., the Slutksy ma-
trices, which convert an income-based demand
function (i.e., Marshallian, or those similar to
equation (16)) to a Hicksian demand, are sym-
metric. In our equation (10) symmetry of the
�ij parameters is a necessary but not sufficient
condition for “Slutksy” symmetry. Though not
sufficient, we impose the symmetry of the �ij
parameters in the estimation of share equa-
tions (Appendix, Section II). An advantage of
imposing adding-up restrictions is that it al-
lows a linear representation of equation (15). If
the shares sum to one, the numerator of equa-
tion (15) summed over i is equal to that of
the denominator. Section II of the Appendix
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shows that this implies
∑n

i=1 	i pi = 0 and so,
we have a linear share equation as follows

si = �i +
n∑

j=1

�ij p̃ j + �i C + 	i Ẽ − �i

�
Ċ .(17)

In sum, equation (17) and the restrictions
noted above (homogeneity, adding up, and
Slutsky symmetry) provide a demand model
that is consistent with both the standard con-
sumer theory of choice and a dynamic food and
health management model.

Equation of Motion

An advantage of our demand approach is that
it allows joint estimation of the equation of
motion Ċ . Using equations (7) and (10), the
equation of motion for cumulative fat is given
by

Ċ = (� + �)VC − �C

VCC

= 1

�2

[(
(� + �)

(
�1 + �2C + 
 Ẽ

+
n∑

i=1

�i p̃i

))
− �C

]
.

(18)

The specification of the DIUF or V(·) func-
tion alone is not sufficient to derive an equa-
tion of motion for cumulative fat. We make
the assumption that � C = −�C where � is a
parameter to be estimated.9 Substituting � C
into equation (18) gives us the reduced form Ċ
equation

Ċ = 1

�2

[(
(� + �)

(
�1 + �2C

+ 
 Ẽ +
n∑

i=1

�i p̃i

))
+ �C

]
(19)

which is nonlinear in parameters. A linearized
version of equation (19) is given by

9 The assumption � C = −�C should not be viewed as overly
restrictive. Even if �C = −�C C + �E Ẽ + ∑n

i=1 �i p̃i , equation (19)
becomes a bit more nonlinear. As noted in the text after equation
(20), our specification of � C doesn’t affect the computation of
price and expenditure elasticities, the adjustment rate of C, and
the effects of C on food demand. A number of IUF specifications
would be consistent with this derivative property.

Ċ = a1 + a2C + a3 Ẽ +
n∑

i=1

a4i p̃i(20)

where a1 = �1

�2
(� + �); a2 = (� + �) + �

�2
; a3 =



�2

; a4i = �i

�2
. Some of the parameters of equa-

tion (19) can be identified using those of equa-
tion (20). Although some other parameters
remain unidentified, the rate of adjustment of
cumulative fat, a2, can be obtained directly
from equation (20). Linearizing (in parame-
ters) the Ċ equation affects neither the com-
putation of price and expenditure elasticities
nor the adjustment rate of C and cumulative
fat effects on MFD demand as shown in the
following sections.

Data

For implementing meat and dairy demand
functions with fat intake, we utilized the
ACNH database. The ACNH database re-
ports households’ purchases of food prod-
ucts, their prices and attributes along with
demographic information. The database has
been compiled since December 1997, but 2001
is the latest year for which data are avail-
able. Our product choice depended on data
availability and included beef, pork, chicken,
fish, milk, and cheese. They represent over
95% of all meat and dairy products con-
sumption reported by participant households
of the ACNH database. Our choice of time
length depended on the frequency of zero
purchases of participant households in the
ACNH database. We chose monthly data since
most consumers purchased milk products fre-
quently, while meat and fish product purchases
are infrequent.10 Detailed prices are available,
e.g., prices of different cuts of beef, milk price
by percent fat content. We obtained aggregate
prices for each of these commodities, by us-
ing a share-weighted average of sub-products’
prices within a commodity.

The choice on households depended on
households’ participation or dropout rates in
the ACNH database. For instance, a house-
hold participating in 1997/98 and abstaining
in 2000 was excluded. Applying our product,
time, and household choice criteria resulted
in a final sample of 250 households, each of
which had thirty-eight monthly observations

10 See also Food Marketing Institute (2005). Biweekly data con-
tained zero purchases for almost all food products for over 60% of
the sample period.
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covering all of 1998–2000 and the last and first
month of 1997 and 2001, respectively. For these
250 households, we obtained demographic in-
formation such as the household’s size, and
male and female education levels for use as
conditioning variables in our estimation. Size is
the number of people in a household, while ed-
ucation is an index taking on values 1–6 based
on years of the schooling and degree/diploma.
The use of the educational index assumes that
for someone with level 6 education, we would
expect that education was six times more im-
portant in food choices than for someone with
level one education. To avoid this restriction,
we introduced an additional variable on edu-
cation: a dummy which takes value one when
both male and female education indexes are
equal to or greater than 4 (college education).

Fat intake is calculated using USDA’s per-
cent fat estimates of food products (Gebhardt
and Thomas 2002). That is, the quantity of each
of the meat and dairy products is multiplied by
its respective (percent) fat content and the re-
sulting term is summed over all products to ob-
tain fat intake. While a common fat decay rate
of 0.3 (parameter � in equation (2)) is assumed
for all households, distinct initial fat levels are
set for each household. The household’s initial
fat level can be obtained using several, alterna-
tive methods. The common method to derive
initial capital stock in the investment literature

Table 1. Descriptive Statistics of Household Data (Monthly)

Share of Nonzero
Standard Observations

Variable Name Unit Mean Deviation (Percentage)

Expenditure shares
Beef 0.3006 0.2293 80
Pork 0.1211 0.1555 64
Chicken 0.1852 0.2054 69
Fish 0.0128 0.0460 18
Cheese 0.0388 0.0596 67
Milk 0.3416 0.2393 91

Consumption quantity
Beef Pounds 8.554 8.025
Pork Pounds 3.634 5.538
Chicken Pounds 6.364 8.518
Fish Pounds 0.410 1.346
Cheese Pounds 1.228 1.669
Milk Pound-equivalents 22.149 18.919

Expenditures Dollars 176.4 116.4
Male education Index, 1–6 3.6800 1.6425
Female education Index, 1–6 3.8400 1.3291
Household size Number 2.7760 1.1857

is to divide the initial investment by its aver-
age growth rate over the sample period (e.g.,
Hall et al. 1988). Alternatively, each house-
hold’s initial-period fat intake can be added to
the average fat level of a representative house-
hold, where the latter is computed by cumulat-
ing fat intake over the first five periods. These
alternative initial fat levels and their respec-
tive rates of change are highly correlated (cor-
relation coefficient of 0.84). Since the choice
on the decay rate and the method of comput-
ing initial fat level are subjective, we perform
sensitivity analyses. The consumer’s subjective
discount rate, �, is assumed to equal 0.013 for
monthly data, which translates to an annual
discount rate of 0.16. We assume a relatively
large discount rate to implicitly test whether
consumers respond to fat accumulation even
if they cared less about future consumption.
Table 1 presents descriptive statistics of our
household data.

Estimation Procedure

We face a number of econometric issues in
the estimation of the dynamic demand sys-
tem. Chief among them is the presence of zero
consumption (table 1). Prior to addressing the
zero-consumption issue, note that Ċ , an en-
dogenous variable, is a regressor in the share
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equations. In this context, instrumental vari-
able estimators are often used to obtain con-
sistent and efficient parameter estimates of the
demand system. However, our system is re-
cursive and so, parameter inconsistency of sys-
tem estimators (e.g., generalized least squares
[GLS]) arises only if the covariance between
the error in the Ċ and each share equation is
not zero (Davidson and McKinnon 2004). In-
deed, Breusch and Pagan’s LM test failed to
reject the hypothesis that the covariance be-
tween the errors of Ċ and each share equation
is zero. The calculated chi-squared test statistic
(9.94) is below the critical value (25, 15 degrees
of freedom) failing to reject the null of zero co-
variance at the 5% significance level. Note that
the LM test did not reject zero covariance of
errors within share equations.

Consistent estimation of a system of equa-
tions, when dependent variables are censored
at zero, i.e., observing zero consumption of
some products or at times, has received much
attention in the demand literature. For each
commodity, observed consumption is nonneg-
ative, but the underlying “latent” variable is
unrestricted since zero consumption is either
intentional or due to random reasons. If a non-
negligible proportion of consumption shares is
negative, then it likely cannot be represented
with a continuous distribution. A number of
estimators have been proposed for consis-
tent and efficient estimation of a censored
demand system (e.g., Amemiya 1974; Wales
and Woodland 1983; Lee and Pitt 1986). Two-
step procedures have been employed in most
household food demand studies (Heien and
Wessels 1990; Hahn 1996). Shonkwiler and
Yen (1999) demonstrate the inconsistency of a
class of two-step estimators and suggest a way
to correct them. However, the Shonkwiler and
Yen (1999) estimator is subject to an inherent
heteroskedasticity problem since the indepen-
dent variables alone are transformed to obtain
consistency. More recently, likelihood estima-
tors including quasi- and simulated-likelihood
procedures have been shown to be consis-
tent and more efficient relative to two-step
estimators commonly used in this literature
(e.g., Yen, Lin, and Smallwood 2003; Dong
and Kaiser 2005). Compounding the issue of
which procedure to apply is that most of these
estimators have only been developed for cross-
sectional data, while their extension to panel
settings awaits further research. Given the
tradeoffs among procedures for censored de-
pendent variables, we chose Shonkwiler and
Yen’s (1999) two-step (SYTS) estimator since

our demand system is derived from a dynamic
setting and applied to panel data. The SYTS
estimator is consistent and its correct covari-
ance matrix can be obtained using Murphy and
Topel’s (1985) procedure as in Yen, Kan, and
Su (2002).11

In the SYTS estimation procedure, for each
commodity a dummy variable which takes on
value one (zero) when consumption is posi-
tive (zero) is created. In the first step, each
commodity-specific dummy is used as a depen-
dent variable in a probit model with prices and
expenditure as independent variables. For ob-
taining the correct covariance matrix as in Yen,
Kan, and Su (2002), the number of regressors
in the first-stage (probit) should equal that in
the second stage (share equations). To ensure
this equality, cross-products of prices and ex-
penditure are used as additional regressors in
the probit model, whose results are used to
evaluate the probability and cumulative den-
sity at each data point.12 The second step of
the SYTS procedure involves estimation of
the share (and Ċ) equations with two cor-
rections: the independent variables are trans-
formed using respective cumulative densities
and the corresponding probability density is
used as an additional regressor (equation (6),
Shonkwiler and Yen 1999, p. 974). After these
two corrections, procedures for the second-
step estimation are no different than those
for a noncensored system and include system
GLS or seemingly unrelated regression (SUR)
procedure. We chose a likelihood procedure
(SUR) since it is required to adjust the co-
variance matrix of the second-step estimator.13

Following Yen, Kan, and Su (2002, equation
(16), p. 1801), the first and second deriva-
tives of likelihood functions of both stages
are evaluated using data and estimated pa-
rameters to derive an adjustment matrix to
correct the second-step estimator’s covariance
matrix.

11 The SYTS procedure imposes the restriction that the latent
shares sum to zero, but that restriction may not apply to observed
shares. Following Yen, Lin, and Smallwood (2003), we estimate
the first n − 1 share equations and deduce the parameters of the

nth equation using the budget identity sn = 1 − ∑n−1
i=1 si . Dong and

Kaiser (2005) impose the restriction that the latent and observed
shares sum to one, but their likelihood procedure has not been
extended to panel settings.

12 Changes in the specification of the probit model had little quan-
titative effects on the second-stage results.

13 We estimated the share and Ċ equations using the SUR proce-
dure assuming that the identified covariance between the errors of
each share and Ċ equation is zero. Our application of the Breusch–
Pagan test detected the expenditure variable as the source of het-
eroskedasticity and so, our share and Ċ equations are weighted
using expenditures (Davidson and McKinnon 2004).
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Prior to including zero consumption
(shares) in the above estimation, we need to
fill in their unobservable prices. There are sev-
eral alternative methods to impute price when
consumption is zero. Some studies, e.g., Lee
and Pitt (1986), have used the underlying de-
mand elasticity estimates to create a price high
enough to force zero consumption. Others
imputed missing prices with sample average
or maximum (Yen, Lin, and Smallwood 2003).
Perali and Chavas (2000) regressed observed
prices (zero and nonzero observations) on
time and household dummies, and used the
least squares predictions to fill in prices
when consumption is zero. In our case, least
square regressions yielded prices for most
commodities in the observed range, which are
not high enough to force zero consumption.
We therefore estimated each price equation as
a censored model. As one would expect, the
predicted price for nonconsuming households
from the censored model is higher relative to
that of Perali and Chavas’ (2000) approach.
An additional issue with prices is that most
studies derive them as unit values, i.e., the
ratio of observed expenditures and quantities
(Dong, Shonkwiler, and Capps 1998). The
unit values when introduced as independent
variables in expenditure share equations
create an endogeneity problem since they
likely include (product) quality choices by
households. As noted in the data section,
prices used in this study are not unit values,
but share weighted averages of sub-products’
prices within a commodity, e.g., various cuts
of beef.

The adding-up, homogeneity and symme-
try (�ij) conditions, as shown in Section II of
the Appendix, are imposed in the estimation
of the censored demand system. We tested
whether or not household size, the educational
levels of male and female members, and the
education dummy of the household are addi-
tional shifters in the share and Ċ equations.
For space considerations, we do not report re-
sults of the chi-squared tests, which soundly
rejected the joint restriction that the coeffi-
cients on household size, educational levels,
and education dummy are equal to zero in the
share and Ċ equations. Furthermore, we tested
our health-based demand system against the
standard Marshallian demand system in equa-
tion (16) by jointly setting (i) the coefficients
on Ċ and C equal to zero in each of the
share equations, and (ii) imposing instant ad-
justment, i.e., a2 = −1, and all other coeffi-
cients equal to zero in the Ċ equation. The
calculated chi-squared test statistic (60,042) is

well above the critical value (5.99, 2 degrees
of freedom) soundly rejecting the standard
Marshallian demand specification. Finally, our
sensitivity analysis suggests that elasticities of
demand with respect to fat, i.e., C effects on
MFD product demand, reported in the next
section become larger as � decreases, but price
and expenditure elasticities, and adjustment
rates remain about the same as with � =
0.013. That is, as consumers begin to care more
about tomorrow, their response to cumulative
fat becomes larger. Changes to the decay rate
and in computing initial fat level did not af-
fect the results, but, as expected, higher de-
cay rates led to lower responses to cumulative
fat.

Results

The parameter estimates of the share and Ċ
equations are presented in table 2. Over two-
thirds of the parameter estimates are signifi-
cant at the 5% level. Note that the cheese share
equation is dropped in our estimation, but its
coefficients are deduced using the budget iden-
tity (Yen, Lin, and Smallwood 2003).

Table 3 presents the short-run price (com-
pensated) and expenditure elasticities with
their standard errors. They are evaluated
at averages using conditional means of the
respective censored dependent variables
(Shonkwiler and Yen 1999). Uncompensated
price elasticities are not presented due to
space considerations. Own-price elasticities
of all commodities, beef, pork, chicken, fish,
cheese, and milk are negative and significant.
They suggest that beef, pork, chicken, and
milk demand are inelastic. The magnitude
of these elasticities is similar to those re-
ported by Yen, Lin, and Smallwood (2003)
except for fish and cheese products. The
own-price demand elasticity of fish is lower
when evaluated at the average share of
households which consumed fish (cheese),
i.e., shares from nonzero observations. In the
case of cheese, the large own-price demand
elasticity is similar to the own-unit value
elasticity in Dong and Kaiser’s (2005) study
on U.S. household cheese consumption. The
magnitude of the own-price cheese (demand)
elasticity may also be an outcome of deducing
cheese equation parameters using the budget
identity or if adding-up does not hold, sit-
uations similar to many household demand
studies (e.g., Yen, Lin, and Smallwood 2003).
Short-run cross price elasticities mostly sug-
gest net substitution among the products, but
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Table 3. Short-Run and Long-Run Price and Expenditure Elasticities of
Demand

Quantity

Item Beef Pork Chicken Fish Cheese Milk

Short-Run

Prices
Beef −0.675∗ 0.268∗ 0.005 0.423∗ 0.545∗ 0.314∗

(0.006) (0.009) (0.006) (0.022) (0.039) (0.004)
Pork 0.126∗ −0.687∗ 0.304∗ 0.193∗ 0.123∗ 0.112∗

(0.004) (0.014) (0.006) (0.025) (0.037) (0.004)
Chicken 0.200∗ 0.198∗ −0.770∗ 0.138∗ 0.375∗ 0.184∗

(0.004) (0.009) (0.009) (0.023) (0.043) (0.004)
Fish 0.081∗ 0.078∗ 0.191∗ −1.086∗ 0.139∗ 0.067∗

(0.004) (0.011) (0.007) (0.037) (0.037) (0.004)
Cheese 0.035∗ −0.005 0.055∗ 0.060∗ −1.946∗ 0.084∗

(0.005) (0.011) (0.009) (0.030) (0.085) (0.005)
Milk 0.335∗ 0.252∗ 0.005 0.381∗ 0.973∗ −0.654∗

(0.004) (0.008) (0.005) (0.019) (0.045) (0.006)
Expenditure 0.930∗ 0.960∗ 0.978∗ 0.996∗ 1.917∗ 0.983∗

(0.004) (0.006) (0.005) (0.013) (0.054) (0.004)

Long-Run
Prices

Beef −0.675 0.271 0.004 0.431 0.454 0.320
Pork 0.126 −0.676 0.307 0.199 0.086 0.117
Chicken 0.200 0.206 −0.769 0.130 0.319 0.187
Fish 0.081 0.083 0.197 −1.072 0.127 0.070
Cheese 0.035 −0.003 0.054 0.062 −1.710 0.082
Milk 0.333 0.621 0.036 1.572 0.902 −0.649

Expenditure 0.930 0.960 0.970 1.022 1.621 1.005

Note: Standard errors are in parentheses. Asterisks denote significance at the 5% level.

some complementarities, e.g., pork and
cheese, are observed. Expenditure elasticities
are significantly positive and range from a
low of 0.930 for beef to a high of 0.996 in the
case of fish and the exception is cheese with
a relatively large expenditure elasticity. In
general, our price and expenditure elasticities
are consistent with those reported in the
literature (Hahn 1996; Kinnucan et al. 1995;
Yen, Lin, and Smallwood 2003; Dong and
Kaiser 2005).

Long-run (steady state) price and expen-
diture elasticities are reported in the sec-
ond panel of table 3. They are similar to
their short-run counterparts. The own-price
demand and expenditure elasticities of cheese
continue to remain large relative to those of
other commodities.

Cumulative Fat’s Adjustment Rates
and Effects on Demand

The Ċ equation is a function of cumulative fat

(C), whose coefficient (a2 = (� + �) + �
�2

) de-

termines the rate at which C adjusts to its op-
timal level. If a2 were to equal −1 then the
new cumulative fat level in time period t + 1,
Ct+1 is independent of the Ct. Hence, restrict-
ing a2 = −1 is equivalent to the instantaneous
adjustment of cumulative fat level. Recall that
we rejected instantaneous adjustment (static
model) in favor of the dynamic demand sys-
tem. In addition, we tested the hypothesis that
the adjustment rate of cumulative fat also de-
pends on the size and/or education level of the
household. So, slope dummies, interacting C
with size, male and female education, and the
education dummy are introduced into the Ċ
equation. The interaction terms allowed us to
test whether or not larger or more educated
households have a different rate of adjustment
of cumulative fat.

Table 4 presents the mean and 95% confi-
dence interval for the rate of adjustment of
cumulative fat to its optimal level in the base
sample (ignoring interaction terms) and its
three variations due to household size and/or
education level. The chi-squared test statis-
tic in the last column corresponds to the
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Table 4. Adjustment Rates of Cumulative Fat, 95% Confidence Intervals

 2 Statistic
Lower Mean Upper for Instant

Sample (Percentage) (Percentage) (Percentage) Adjustment

Base sample −2.91 −2.53 −2.14 30,700
Adjustment rates for

Larger households −4.38 −3.26 −2.14 30,069

Highly educated households
Male −5.02 −3.90 −2.78 33,524
Female −4.79 −3.65 −3.15 35,820

Larger and highly educated households −5.74 −4.63 −3.53 28,044

Note: Education dummy takes value 1 when male and female education indexes are equal to or greater than 4.

restriction that a2 = −1 for the base, and the
restriction that the sum of a2 and the coeffi-
cient on the interaction term equals −1 for the
three variations. For instance, if aH

2 is the coef-
ficient of the interaction between cumulative
fat (C) and household size, then the instan-
taneous adjustment restriction is aH

2 + a2 =
−1. For the base sample (all 250 households)
and the three variations, we reject instanta-
neous adjustment of cumulative fat at the 5%
significance level. The mean adjustment rate
of −2.53% per month translates into −30.3%
per year in the base sample. For instance, if
households desired to reduce the steady-state
fat level by 50%, it would take approximately
two years to achieve that reduction. The ad-
justment rate is higher for larger households
(–3.26% per month or −39.1% per year) and
for highly educated male or female households
(–3.90 or 3.65% per month or −46.8 or 43.8%
per year, respectively). When accounting for
household size and education, the adjustment
rate is −4.63% per month or −55.6% per year.
These results imply that certain factors pre-
clude consumers from instantaneously adjust-
ing their fat intake, which we termed earlier as
“adjustment benefits.”

Table 5. Elasticities of Demand with Respect to Fat

Base Sample Educated Households

Standard Standard
Commodity Elasticities Error Elasticities Error

Beef −0.0032∗ 0.0013 −0.0006 0.0011
Pork −0.0103∗ 0.0023 0.0145∗ 0.0029
Chicken −0.0034∗ 0.0003 0.0110∗ 0.0035
Fish −0.0150∗ 0.0002 0.0359∗ 0.0031
Cheese 0.2180∗ 0.0005 −0.3564∗ 0.0012
Milk −0.0185∗ 0.0002 0.0268∗ 0.0003

Note: Asterisks denote significance at the 5% level.

The steady-state elasticities of demand with
respect to fat or the effects of cumulative fat
(C) on demand for meat and dairy products
and respective standard errors are reported in
table 5. Unlike adjustment rates, we present
only one additional set of elasticities using
the educated dummy. The household size and
male/female educational differences did not
significantly alter the elasticities of demand
with respect to fat and hence, they are not re-
ported. In the base sample, these fat elasticities
indicate that a 1% increase in C would sig-
nificantly reduce demand for all MFD prod-
ucts except cheese. While we do not have a
priori expectations for the signs of fat elastici-
ties, some of the results can be driven by habit
formation and technological change altering
the proportion of bads in MFD products, e.g.,
fat content. However, educated households,
which adjust faster to an increase in cumulative
fat level, exhibit different responses relative
to the base sample. For educated households,
the elasticities of demand with respect to fat
are negative for beef and cheese, but only
the cheese elasticity is significant at the 5%
level. Most notable is the pronounced increase
(decrease) in the demand for fish (cheese)
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products due to a 1% increase in C among
educated households, which is consistent with
the recommendations of the scientific studies
noted earlier. Although a direct comparison
with other studies is not feasible, these results
are consistent with the health-information ef-
fects on food demand in Chern, Loehman,
and Yen (1995), and Kim and Chern (1999).
Kinnucan et al. (1995) found switching from
red to white meat products in U.S. food con-
sumption due to health concerns, while Dong
and Kaiser (2005) showed that education neg-
atively impacts households’ cheese purchases.

Summary and Conclusions

We proposed a dynamic approach to incorpo-
rate health variables in the demand for MFD
products. It involved a two-step optimization
problem, where the first step consists of a
utility maximization problem with two con-
straints: an expenditure constraint and a fat
intake constraint. Here, consumers earn pos-
itive utility from the consumption of foods
(goods), even those with high fat content, but
earn negative utility from their cumulative fat
level (bads) in the body. Therefore, consumers
face not only expenditure constraints but also
constraints on the amount of fat they are will-
ing to absorb each time period. The solution to
the first-step problem is an IUF with proper-
ties not unlike those of the standard IUF, but
fat intake and the cumulative fat level are ar-
guments of the IUF.

In the second step consumers maximize util-
ity over time by regulating their fat intake
in order to control the cumulative fat level.
The choice on fat intake is presented as a dy-
namic optimization problem, which leads us
to a DIUF. Using the duality properties of
the DIUF we derive dynamic consumer de-
mand functions with fat intake and cumula-
tive fat as arguments in addition to prices and
expenditures.

A second-order approximation of the DIUF
translated the dynamic demand functions into
expenditure shares and also provided an equa-
tion of motion for cumulative fat. They are es-
timated as a censored system using data on
250 U.S. households on a monthly basis be-
tween December 1997 and January 2001, which
are obtained from the ACNH database. The
products included in our estimation are beef,
pork, chicken, fish, milk, and cheese. The fat
content of these products are taken from a
recent report from the U.S. Department of
Agriculture’s Agricultural Research Service to
derive fat intake and cumulative fat levels over

time. Various specification tests and residual
analyses validated our estimated censored de-
mand system.

We find that consumers’ do not instanta-
neously adjust their cumulative fat level to
its optimum, but the rate of adjustment de-
pends on households’ size and education. The
elasticities of demand with respect to fat in-
dicate that an increase in cumulative fat level
shifts consumption in favor of white meat or
dairy products and against red meat prod-
ucts, but significant differences exist in the
responses of educated and other households.
Educated households show more diet disci-
pline by quickly moving to their desired fat lev-
els. The adjustment rates of cumulative fat and
the elasticities of demand with respect to fat in-
dicate that consumers consciously incorporate
health attributes such as fat content in their
food choices. Therefore, food demand studies
should also consider the underlying health de-
cisions and risks faced by consumers. In this
context, our dynamic approach provides an un-
derstanding of how consumers manage an im-
portant health attribute, i.e., accumulated body
fat. More importantly, we guide the choice of
health variables to include in demand estima-
tion using dynamic duality theory. Substitution
possibilities, education, and the publicly avail-
able, health-related information are important
in managing and adjusting fat levels, which are
well reflected in the demand responses of ed-
ucated households in our sample. It is likely
that some consumers manage more than one
“bad.” A similar modeling of calorie or choles-
terol management and its adjustment along
with efforts to develop databases on individ-
uals will likely aid in a better understanding
of dietary choices and human health including
obesity.

[Received March 2004;
accepted January 2006.]
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Appendix

Properties of the Dynamic Indirect Utility
(Value) Function

The DIUF is homogenous of degree zero in prices
and income if

n∑
i=1

Vpi pi + VE E = 0.(A1.1)

Using the relation in equation (4), the expression in
(A1.1) becomes

n∑
i=1

(� pi + VCpi
Ċ)

pi

�
+ (� E + VCEĊ)

E

�
= 0

(A1.2a)

or

1

�

(
n∑

i=1

� pi pi + � E E

)

+ 1

�

(
n∑

i=1

VCpi
pi + VCE E

)
Ċ = 0.

(A1.2b)

The first term in equation (A1.2b) equals zero by
homogeneity of the static IUF. Therefore the DIUF
is homogenous of degree zero in prices and expen-
ditures if

n∑
i=1

Vpi pi + VE E = 1

�

(
n∑

i=1

VCpi
pi + VCE E

)
Ċ = 0

(A1.3a)

or if

n∑
i=1

(�Vpi − VCpi
Ċ)pi + (�VE − VCEĊ)E = 0.

(A1.3b)

From equation (7) we know that

�Vpi − VCpi
Ċ = � pi ∀i = 1, 2, . . . , n

�VE − VCE Ċ = � E .
(A1.4)

Substituting (A1.4) into (A1.3b) gives

n∑
i=1

� pi pi + � E E = 0(A1.4)

which must hold by the homogeneity condition of
the static IUF. Therefore, the DIUF inherits the
static IUF property of homogeneity of degree zero
in prices and expenditure. Similarly, the DIUF can
be shown to be decreasing in cumulative fat, convex
in output prices, and concave in expenditures given
similar properties of the static IUF (Lemma 1, part
b, Epstein 1981, p. 86).

Deriving the Linear Share Equation

Adding up, i.e., shares sum to one, holds if the sum
of the numerators of each share equation equals the
denominator.

si =
�

(
�i + ∑n

j=1 �ij p̃ j + �i C + 	i Ẽ
)

− �i Ċ

� (1 + ∑n
i=1 	i p̃i )

=
(

�i + ∑n
j=1 �ij p̃ j + �i C + 	i Ẽ

)
− �i

�
Ċ

(1 + ∑n
i=1 	i p̃i )

.

(A2.1)

Since
∑n

i=1 si = 1

n∑
i=1

{
�

(
�i +

n∑
j=1

�ij p̃ j + �i C + 	i Ẽ

)
− �i Ċ

}

=
n∑

i=1

�

(
1 +

n∑
i=1

	i p̃i

)
.

(A2.2)

From equation (15), we imposed
∑n

i=1 �i = 1;∑n
i=1 �ij = ∑n

j=1 �ij = ∑n
i=1 �i = ∑n

i=1 	i = 0.

Therefore, �(1 + ∑n
i=1

∑n
j=1 �ij p̃ j ) = �(1 + ∑n

i=1 ×
	i p̃i ). Note that the p̃’s in the double summation is
indexed over j only. So, �(1 + ∑n

i=1

∑n
j=1 �ij p̃ j ) = 0

meaning,
∑m

i=1	i pi = 0. As a result the denomina-
tor of (A2.1) reduces to 1. The nonlinear share equa-
tion has now become a linear function of prices,
expenditure, and cumulative fat.


